Detection and avoidance of a carnivore odor by prey.
نویسندگان
چکیده
Predator-prey relationships provide a classic paradigm for the study of innate animal behavior. Odors from carnivores elicit stereotyped fear and avoidance responses in rodents, although sensory mechanisms involved are largely unknown. Here, we identified a chemical produced by predators that activates a mouse olfactory receptor and produces an innate behavioral response. We purified this predator cue from bobcat urine and identified it to be a biogenic amine, 2-phenylethylamine. Quantitative HPLC analysis across 38 mammalian species indicates enriched 2-phenylethylamine production by numerous carnivores, with some producing >3,000-fold more than herbivores examined. Calcium imaging of neuronal responses in mouse olfactory tissue slices identified dispersed carnivore odor-selective sensory neurons that also responded to 2-phenylethylamine. Two prey species, rat and mouse, avoid a 2-phenylethylamine odor source, and loss-of-function studies involving enzymatic depletion of 2-phenylethylamine from a carnivore odor indicate it to be required for full avoidance behavior. Thus, rodent olfactory sensory neurons and chemosensory receptors have the capacity for recognizing interspecies odors. One such cue, carnivore-derived 2-phenylethylamine, is a key component of a predator odor blend that triggers hard-wired aversion circuits in the rodent brain. These data show how a single, volatile chemical detected in the environment can drive an elaborate danger-associated behavioral response in mammals.
منابع مشابه
Spatial and temporal avoidance of risk within a large carnivore guild
Within a large carnivore guild, subordinate competitors (African wild dog, Lycaon pictus, and cheetah, Acinonyx jubatus) might reduce the limiting effects of dominant competitors (lion, Panthera leo, and spotted hyena, Crocuta crocuta) by avoiding them in space, in time, or through patterns of prey selection. Understanding how these competitors cope with one other can inform strategies for thei...
متن کاملPhysical constraints of chemoreception in foraging copepods
The small-scale spatial and temporal dynamics of phycosphere-sized chemical signals entrained within the feeding current of copepods is quantified here by combining flow visualization techniques with electrochemical technology (IVEC-10). Using the 30-mm electrochemical probe sampling at 50 Hz and the velocity gradients created by two marine copepods, we evaluated how odor deformation improves t...
متن کاملThe olfactory hole-board test in rats: a new paradigm to study aversion and preferences to odors
Odors of biological relevance (e.g., predator odors, sex odors) are known to effectively influence basic survival needs of rodents such as anti-predatory defensiveness and mating behaviors. Research focused on the effects of these odors on rats' behavior mostly includes multi-trial paradigms where animals experience single odor exposures in subsequent, separated experimental sessions. In the pr...
متن کاملDo the antipredator strategies of shared prey mediate intraguild predation and mesopredator suppression?
Understanding the conditions that facilitate top predator effects upon mesopredators and prey is critical for predicting where these effects will be significant. Intraguild predation (IGP) and the ecology of fear are hypotheses used to describe the effects of top predators upon mesopredators and prey species, but make different assumptions about organismal space use. The IGP hypothesis predicts...
متن کاملAre single odorous components of a predator sufficient to elicit defensive behaviors in prey species?
When exposed to the odor of a sympatric predator, prey animals typically display escape or defensive responses. These phenomena have been well-documented, especially in rodents, when exposed to the odor of a cat, ferret, or fox. As a result of these experiments new discussions center on the following questions: (1) is a single volatile compound such as a major or a minor mixture constituent in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 27 شماره
صفحات -
تاریخ انتشار 2011